ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Теплосчетчики ультразвуковые ultra Lx h

Назначение средства измерений

Теплосчетчики ультразвуковые ultra Lx h (далее теплосчетчики) предназначены для измерения и коммерческого учета количества теплоты и объема теплоносителя (воды) в закрытых системах теплоснабжения с температурой теплоносителя, не превышающей 90 $^{\circ}$ C, в жилых и коммунально-бытовых зданиях.

Описание средства измерений

Принцип действия теплосчетчика основан на измерении расхода теплоносителя, прошедшего через закрытую систему отопления, разности температур в подающем и обратном трубопроводе и вычислении на их основе количества теплоты.

Теплосчетчик состоит из ультразвукового преобразователя расхода, комплекта из 2-х термопреобразователей сопротивления Pt 500 и вычислителя. Ультразвуковой преобразователь определяет расход, измеряя разность скоростей прохождения ультразвукового сигнала по направлению и против направления потока теплоносителя. Сигналы преобразователя расхода и термопреобразователей сопротивления поступают на вычислитель, который вычисляет количество теплоты.

Теплосчетчик имеет ЖКИ-дисплей, на котором отображается количество теплоты, накопленный объем, время работы, температура в подающем и обратном трубопроводе. Результаты измерения записываются в энергонезависимую память (EEPROM). Доступ к памяти возможен через инфракрасный порт, расположенный на лицевой панели теплосчетчика с использованием оптической головки и ручного терминала (персонального компьютера). Для подключения к системам дистанционного сбора данных вычислитель комплектуется интерфейсным модулем соответствующего типа.

Составные части теплосчетчика могут быть смонтированы как единое целое или вычислитель находится отдельно и соединен с ультразвуковым преобразователем расхода и кабелем длиной 1500 мм. Преобразователи расхода предназначены для монтажа в прямом или обратном трубопроводе. Теплосчетчики имеют автономное питание и предназначены для непрерывной работы.

Общий вид, места и способы пломбирования теплосчетчиков приведены на рисунке 1.

Рисунок 1 – Внешний вид теплосчетчиков ультразвуковых ultra Lx h

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Волоград (8172)26-41-59 Воропеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Красноварск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новосибирск (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Орейбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31

Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санта-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Талжинкистан (992)427-82-92-69

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Программное обеспечение

Теплосчетчики классифицируются как автономные измерительные приборы с защищенным интерфейсом. Всей работой теплосчетчиков управляет программа, которая устанавливается (зашивается в ПЗУ) на этапе производства и не может быть изменена преднамеренно или случайно во время эксплуатации.

Идентификационные данные ПО представлены в табл. 1.

Таблица 1

Наименование программного обеспечения	Идентификационное наименование программного обеспечения	Номер версии (идентифика- ционный номер программного обеспечения)	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
ultra Lx h	2WR6	3.16	_	_

Уровень защиты ПО от преднамеренных и непреднамеренных изменений соответствует уровню защиты «А» в соответствии с МИ 3286-2010 для встроенной части ПО и не требует специальных средств защиты метрологически значимой части ПО.

Метрологические и технические характеристики

Диаметр условного прохода, мм	15	15	20
Максимальный расход, q_{max} , m^3/q	1,2	3,0	5,0
Номинальный расход, q_n , m^3/q	0,6	1,5	2,5
Минимальный расход, q_{min} , M^{\prime} ч	0,006	0,015	0,025
Порог чувствительности, м ³ /ч	$0.5q_{ m min}$		
Пределы допускаемой относительной погрешности при измерении количества теплоты, % $3 \le \Delta t < 10$ $10 \le \Delta t < 20$ $20 \le \Delta t < 80$	±6 ±5 ±4		
Пределы допускаемой относительной погрешности при измерении объема, % $0.04q_{nom} \leq q \leq q_{max}$ $q_{min} \leq q < 0.04q_{nom}$	±2 ±4		
Рабочее давление теплоносителя, МПа, не более	1,6		
Потеря давления при q _{max} , МПа, не более	0,02		
Тип термопреобразователя сопротивления	Pt500		
Диапазон измерения температур теплоносителя, °С	от плюс 5 до плюс 90		
Пределы допускаемой абсолютной погрешности при измерении температуры, °С	$\pm (0.6 + 0.004 \cdot t),$ где t — температура воды в трубопроводе		
Диапазон измерения разности температур, °С	от 3 до 80		

Пределы допускаемой абсолютной погрешности при измерении разности температур, °С	$\pm (0.5 + 3\Delta t_{min}/\Delta t),$ где Δt — разность температур в подающем и обратном трубопроводах;	
	$\Delta t_{ m min}$ — минимальная измеряемая разность температур	
Пределы допускаемой относительной погрешности измерения времени, %	±0,1	
Напряжение батареи питания, В	3±0,3	
Габаритные размеры, мм, не более	110×115×83	130×115×83
Масса, кг, не более	0,7	0,8
Емкость счетного механизма, кВт/ч	9999999	
Срок службы батареи питания, лет, не менее	6	
Условия эксплуатации:		
– температура окружающей среды, °C	от 5 до 55	
– относительная влажность, %	от 30 до 80	

Знак утверждения типа

наносится на переднюю панель теплосчетчика методом наклейки и на титульном листе Паспорта типографским способом.

Комплектность средства измерений

В комплект поставки входят:

1. Теплосчетчик ultra Lx h	1 шт.
2. Паспорт	1 шт.
3. Методика поверки	1 шт.
4. Упаковка	1 шт.

Поверка

осуществляется по документу 435-094-2013 МП «Теплосчетчики ультразвуковые ultra Lx h. Методика поверки», утвержденному ГЦИ СИ ФБУ «Тест-С.-Петербург» 25.07.2013 г.

Перечень эталонов, применяемых при поверке:

- установка поверочная с диапазоном расходов от 0,006 до 5 $\text{м}^3/\text{ч}$, $\Pi\Gamma \pm 0,5 \%$;
- -2 термостата жидкостные от 4 до 90 °C, ПГ поддержания ± 0.1 °C;
- термометр от 5 до 100 °C, ПГ $\pm 0,1$ °C;
- манометр до 16 кгс/см², КТ 1,0;
- секундомер от 0,1 до 30 с, КТ 2.

Сведения о методиках (методах) измерений

Методика измерений приведена в Паспорте на теплосчетчик.

Нормативные и технические документы, устанавливающие требования к теплосчетчикам ультразвуковым ultra Lx h

- 1. ГОСТ 8.510-2002 «ГСИ. Государственная поверочная схема для средств измерений объема и массы жидкостей».
- 2. ГОСТ 8.558-93 «ГСИ. Государственная поверочная схема для средств измерений температуры».

- 3. ГОСТ Р EN 1434-1-2011 «Теплосчетчики. Часть 1. Общие требования».
- 4. ГОСТ Р 51649-2000 «Теплосчетчики для водяных систем теплоснабжения. Общие технические условия».
 - 5. Техническая документация фирмы «Techem Energy Services GmbH», Германия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- осуществление торговли и товарообменных операций.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астана (8512)99-46-04 Барнаул (8522)99-46-04 Барнаул (3852)73-04-60 Бенгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)84-55-89 Иваново (4932)77-34-06 Нжевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининграл (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноврек (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новосибирск (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Орейбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31 Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Таджикистан (992)427-82-92-69

Сургуг (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Уфа (347)229-48-12 Хабаровск (8422)24-23-59 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

https://techem.nt-rt.ru/ || tmc@nt-rt.ru